Effect of platelet-derived growth factor receptor-alpha and -beta blockade on flow-induced neointimal formation in endothelialized baboon vascular grafts.
نویسندگان
چکیده
The growth of neointima and neointimal smooth muscle cells in baboon polytetrafluoroethylene grafts is regulated by blood flow. Because neointimal smooth muscle cells express both platelet-derived growth factor receptor-alpha and -beta (PDGFR-alpha and -beta), we designed this study to test the hypothesis that inhibiting either PDGFR-alpha or PDGFR-beta with a specific mouse/human chimeric antibody will modulate flow-induced neointimal formation. Bilateral aortoiliac grafts and distal femoral arteriovenous fistulae were placed in 17 baboons. After 8 weeks, 1 arteriovenous fistulae was ligated, normalizing flow through the ipsilateral graft while maintaining high flow in the contralateral graft. The experimental groups received a blocking antibody to PDGFR-alpha (Ab-PDGFR-alpha; 10 mg/kg; n=5) or PDGFR-beta (Ab-PDGFR-beta; 10 mg/kg; n=6) by pulsed intravenous administration 30 minutes before ligation and at 4, 8, 15, and 22 days after ligation. Controls received carrier medium alone (n=8). Serum antibody concentrations were followed. Grafts were harvested after 28 days and analyzed by videomorphometry. Serum Ab-PDGFR-alpha concentrations fell rapidly after day 7 to 0, whereas serum Ab-PDGFR-beta concentrations were maintained at the target levels (>50 microg/mL). Compared with controls (3.7+/-0.3), the ratio of the intimal areas (normalized flow/high flow) was significantly reduced in Ab-PDGFR-beta (1.2+/-0.2, P<0.01) but not in Ab-PDGFR-alpha (2.2+/-0.4). Ab-PDGFR-alpha decreased significantly the overall smooth muscle cell nuclear density of the neointima (P<0.01) compared with either the control or Ab-PDGFR-beta treated groups. PDGFR-beta is necessary for flow-induced neointimal formation in prosthetic grafts. Targeting PDGFR-beta may be an effective pharmacological strategy for suppressing graft neointimal development.
منابع مشابه
The role of platelet-derived growth factor signaling in healing myocardial infarcts.
OBJECTIVES This study sought to examine the role of platelet-derived growth factor (PDGF) signaling in healing myocardial infarcts. BACKGROUND Platelet-derived growth factor isoforms exert potent fibrogenic effects through interactions with PDGF receptor (PDGFR)-alpha and PDGFR-beta. In addition, PDGFR-beta signaling mediates coating of developing vessels with mural cells, leading to the form...
متن کاملCharacterization of thrombin receptor expression during vascular lesion formation.
Blood vessels respond to injury by initiating cell proliferation and migration that result in vascular lesion formation. To determine the roles of thrombin and the thrombin receptor in this process, we characterized thrombin receptor expression in normal and injured arteries, thrombin receptor-mediated smooth muscle cell mitogenesis, and the regulation of thrombin receptor mRNA expression in vi...
متن کاملEngineering an Endothelialized Vascular Graft: A Rational Approach to Study Design in a Non-Human Primate Model
After many years of research, small diameter, synthetic vascular grafts still lack the necessary biologic integration to perform ideally in clinical settings. Endothelialization of vascular grafts has the potential to improve synthetic graft function, and endothelial outgrowth cells (EOCs) are a promising autologous cell source. Yet no work has established the link between endothelial cell func...
متن کاملSmooth muscle LDL receptor-related protein-1 inactivation reduces vascular reactivity and promotes injury-induced neointima formation.
OBJECTIVE Defective smooth muscle expression of LDL receptor-related protein-1 (Lrp1) increases atherosclerosis in hypercholesterolemic mice. This study explored the importance of smooth muscle Lrp1 expression under normolipidemic conditions. METHODS AND RESULTS Smooth muscle cells isolated from control (smLrp1(+/+)) and smooth muscle-specific Lrp1 knockout (smLrp1(-/-)) mice were characteriz...
متن کاملXBP 1-Deficiency Abrogates Neointimal Lesion of Injured Vessels Via Cross Talk With the PDGF Signaling.
OBJECTIVE Smooth muscle cell (SMC) migration and proliferation play an essential role in neointimal formation after vascular injury. In this study, we intended to investigate whether the X-box-binding protein 1 (XBP1) was involved in these processes. APPROACH AND RESULTS In vivo studies on femoral artery injury models revealed that vascular injury triggered an immediate upregulation of XBP1 e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 86 7 شماره
صفحات -
تاریخ انتشار 2000